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Quantitative molecular interpretation of curvature elasticity of saturated surfactant monolayers
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The charge-frustrated model of self assembly is applied to compute the curvature elasticity of saturated
surfactant interfaces in bicontinuous microemulsions. Explicit formulas are derived to relate the elastic moduli

to molecular properties such as surfactant chain length.
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Much effort has been devoted in recent years to the study
of interfaces and membranes [1-3]. The term interface usu-
ally refers to the boundary between two phases, as in a bi-
nary mixture of a polar species P and a hydrophobic species
H (e.g., water and oil). Well below the critical point, the
mixture separates into - and P-rich phases. The finite en-
ergy cost per unit interfacial area, or interfacial tension, gov-
erns the statistical mechanics and suppresses fluctuations.
Amphiphilic surfactants tend to assemble at the P-H inter-
faces, so that their P- and H-like parts can reside in the
preferred component. The resulting surfactant monolayers or
thin films have low or vanishing surface tension and exhibit
large fluctuations.

The phenomenological description of fluctuating inter-
faces is provided by Helfrich’s Hamiltonian [1-4]

%zf d*S[o+ N\ H+2kH?*+ kK]. (1)

Here, R; and R, are the principal radii of curvature of the
interface, H=(1/R;+1/R,)/2 is the mean curvature,
K=1/R|R, is the Gaussian curvature, and \;= —4 /R, is
proportional to the spontaneous curvature 1/R,. Being geo-
metric in nature, this Hamiltonian describes structureless
membranes. It is often a satisfactory approximation for fluid
membranes. All chemical and structural information is em-
bodied in the phenomenological constant prefactors: the in-
terfacial tension o, the bending rigidity «, the saddle splay
modulus k, and the spontaneous curvature modulus A ;. Our
goal is a molecular theory for these prefactors.

There have been a few theoretical attempts to relate these
elasticity parameters to molecular properties such as surfac-
tant chain lengths [5—7]. The usual starting point is an as-
sumed mechanical model of surfactant monolayers. The con-
formational statistics of the chainlike surfactants are then
considered numerically to extract the free energy cost of
bending the flat monolayer. These theories, however, lack a
direct relation to the general statistical mechanics of am-
phiphilic mixtures and Landau-Ginzburg models [2]. In con-
trast, our approach considers independent oil, water and sur-
factant concentration fields and derives the self assembly of
interfaces. In particular, we use the charge-frustrated Ising
model of oil-water-surfactant mixtures [8,9]. This model pro-
vides the minimalist description of the entropy reduction in a
P-H mixture caused by the presence of surfactant molecules.
Its ingredients are readily measurable quantities: the oil-
water interfacial tension in the absence of surfactants, the
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length of a surfactant molecule, and the surfactant concen-
tration. This charge frustrated extension of the Ising model of
binary mixtures was first suggested by Wu et al. [8], moti-
vated by the density functional approach of Stillinger [10].
Stillinger’s density functional theory was also generalized to
study bicontinuous microemulsions [11]. A recent analytical
work of ours [9] has shown that a simple mean field treat-
ment of the charge-frustrated Ising Hamiltonian can predict
the structure factor of microemulsions with  quantitative ac-
curacy. A reduction of the Hamiltonian, followed by a mean
field treatment, yields a Landau-Ginzburg free energy func-
tional. With this functional, we may consider the free energy
cost of bending the flat oil-water interface. This consider-
ation allows us to derive the elasticity parameters. The ap-
proach we take therefore encompasses the whole hierarchy
of theories from a microscopic picture to the Helfrich model.

The charge-frustrated Ising model has a Hamiltonian with
two fields. These fields label cells on a spatial grid according
to whether the cells are occupied by oil-like or waterlike
species (s;= *1), and whether these species are or are not
associated with surfactants (¢#;=1 or 0). One may, for ex-
ample, consider a cubic lattice, with intercell spacing a. The
specific symmetry of the lattice is irrelevant, but a micro-
scopic length a is a significant number in the theory. It is
roughly the diameter of a water molecule or the diameter of
a segment of oil [9]. For the oil-water symmetric case appro-
priate to bicontinuous microemulsions, the Hamiltonian is
[8,9]

1 q2
Fsiti]=— 52:‘1’ Jijsisj+ = zﬁ vijsisjtitj”,uzi t.
(2

The tendency of oil and water to phase separate is expressed
by the nearest-neighbor ferromagnetic interaction,

J>0, ifi and j nearest neighbors
J;i=

710, otherwise.

The entropy reduction induced by surfactants is embodied in
the Coulombic interaction,

vu:(l/N)g (4m/a’k*)exp(ik-r;)), (3)

where N is the total number of lattice sites. The frustrating
charge is given by Stillinger’s formula [10]

v
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q=(3/4mBpA?)'?, “) p(m)=cy(1-m?/2)?, (9¢)

where B=1/kgT and p is the number density of surfactants. with

The characteristic length scale of a surfactant molecule A is _ 5 2

essentially the root mean square distance between the head c1=pJa"—zA%/6, (10a)

and tail groups within the molecule. The chemical potential c,=2zA%/36. (10b)

o controls the amount of surfactants.

A reduced version of the charge-frustrated Ising model
can be obtained from Eq. (2) by integrating out the frustrat-
ing charge degrees of freedom ¢;. This reduction was done
approximately in Ref. [9] with a Debye-Huckel-like approxi-
mation. It introduces an additional interaction between oil
and water densities besides the hydrophobic interaction J;; .
The additional interaction is a screened Coulomb interaction
with range of order A. Once the charge degrees of freedom
are integrated out, standard local mean field theory can be
used to obtain the following free energy functional [9]:

1
BF[m;]=—InC—Nz+ 52 [(1+m)In(1+m;)

1
+(1—my)In(1—m;)]— 512] (BJ;j—Gj)mm;,

®)

where G;; is the inverse Fourier transform of
z/(1+ pa3A®k*/3z) and z=exp(Bu) is the fugacity of the
charged sites.

The minimization of Eq. (5) determines the order param-
eter for the homogeneous phases, m=(s;), given by

m=tanh[ (6 BJ —z)m]. 6)

From Egs. (5) and (6), we get the self-consistent relation
between the surfactant density p=pa> and the fugacity z,

2p=—(1/N)dBF/d Inz=z(1—m?>/2), (7)

where m is determined by (6). In Eq. (7), the contribution
from InC has been neglected, which can be shown to be a
good approximation for large A/a [9]. For the oil-water
mixed or lamellar phases where m =0, Eq. (7) reduces to the
small density limit of the fugacity series in general grand
canonical systems, z=2p. For the case of oil-water phase
separation where m?>>>0, the density of surfactants is smaller
than in the phase with m=0 for given values of chemical
potential.

The continuum limit of Eq. (5) has the form of a Landau-
Ginzburg functional and is derived by taking small-k expan-
sions of the interaction terms [9]:

BF[MJ=%I dr[—Am?*(r)+g(m)(Vm)>+p(m)
X (V2m)?+m*(r)/6+0(m®)], (®)
where, using Eq. (7) to eliminate p,
A=6BJ—1—z, (9a)

g(m)=c,+zA*m?/12, (9b)

To derive Egs. (8) and (9), the local density approximation
has been invoked to recast Eq. (7) in the local form

2p(r)a’=z[1—m(r)?2]. (11)

Thus, Eq. (8) is a generalization of the functional used in
Ref. [9] to study bicontinuous microemulsions. It is the gen-
eralization we need to compute elastic moduli.

A nonlinear field theory is generated by the Landau-
Ginzburg free energy functional Eq. (8). Its Euler-Lagrange
equation admits classes of localized or solitonlike solutions
representing interfaces. To extract the elastic properties of
interfaces, specifically the surfactant monolayers, we follow
Gompper and Zschocke [12]. In particular, we assume that
stationary solutions of the field equation 6F/ém(r)=0 that
describe a planar oil-water interface with a one dimensional
profile m=m(x) exist. This approach neglects long ranged
interactions or steric interactions between different monolay-
ers.

Rather than solving the Euler-Lagrange equation numeri-
cally, we find it convenient to use the variational method
with a trial mean field profile,

m=mgtanh(x/&). (12)

The corresponding excess free energy per unit area is mini-
mized with respect to the variational parameter £ [12]. In Eq.
(12), m, is the value of the bulk phase order parameter. The
boundary condition lim,_, +.dm/dx=0 together with Eq. (8)
gives my=(3A)Y2. The minimization yields

AE=c1+2zA%A20+[(c;+2A%A/20)?
+6Ac,(154%2—36A +28)/35]'2. (13)

This variational solution becomes the exact solution to
dF/dm(x)=0 in the limit z— 0. We can interpret £ given by
Eq. (13) as a measure of the width of the interface. For given
BJ and a, £ increases monotonically with increasing z and
A. For A>a, ¢ is essentially linear in A.

Substitution of Eq. (12) with Eq. (13) into Eq. (8) deter-
mines the interfacial tension of the system [13],

2A ) )
Bo= 3a3§(2A§ +2c;+2zA%A/10). (14)

For given values of A and BJ, o decreases with increasing
chemical potential of surfactant, or with fugacity z. For the
values of parameters satisfying

172

2Ac, »
(15A°—36A+28)| , (15)

35

c1+2zA%A/20=—

the interfacial tension vanishes, and the surfactant monolayer
is said to be saturated [2]. Further addition of surfactants
simply increases the total area of monolayers, and the elastic
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FIG. 1. The minimum of fugacity necessary to saturate the in-
terface z; as a function of chain length A at 8/=0.2 and a=2 A.

properties of monolayers are expected to remain approxi-
mately constant. Figure 1 shows the saturation points,
z=2z4(A), given by Eq. (15) at a=2 A and BJ=0.2. These
parameter values are those that have been used consistently
in Ref. [9] to reproduce experimental scattering data quanti-
tatively. With increasing chain length of surfactant, the
fugacity required to saturate the interface decreases to ap-
proach the asymptotic value z,=0.12, reflecting the increase
in surfactant amphiphilicity.

In view of the relation between fugacity and density, Eq.
(11), it appears that functional (8) overestimates z;. A larger
volume fraction of surfactant (~107!) is required to saturate
the interface than typically observed experimentally
(~1073). The origin of this discrepancy lies in the approxi-
mation, inherent in model (2), which assigns a single con-
stant to characterize all short ranged interactions, irrespective
of whether the interacting species involve surfactant or not.
Some effects due to the temperature and chain length depen-
dence of the water-surfactant interaction energy are not taken
into proper account [9]. One such effect is that surfactant
solubility in the bulk phases is overestimated, leading to
large values of z; .

This error could be eliminated by extending the number
of energy parameters in the Hamiltonian. But the elastic
properties of monolayers, such as the bending moduli, are
largely insensitive to this error, as long as the interface is
saturated. Indeed, bending moduli are mainly affected by
geometric factors like the area per molecule and chain
length. These properties are already described correctly by
our model, as supported by its success in predicting structure
factors quantitatively [9]. As a further support, consider the
Gibbs isothermal equation for the area per surfactant at the
interface, 3,

3 1=—(9B0o/d Inz)y. (16)

With this relation and Eqgs. (14) and (15), the typical values
of 3 at saturation are found to be between 50 and 100 AZ, in
agreement with experiment [14].

The elastic properties of monolayers can be obtained by
taking the free energies of the spherical and cylindrical in-

A )

FIG. 2. The bending rigidity « (solid line) and minus the saddle
splay modulus — i (dashed line) of saturated monolayers as a func-
tion of surfactant chain length A at 8J=0.2 and a=2 A. The thin
dotted line has the slope 3 which represents the asymptotic scaling
k~A3. The two rectangles represent the data points of bending
rigidity from Ref. [16].

terfaces with radius R, and expanding in 1/R [12]. The spon-
taneous curvature modulus N\, in Eq. (1) is identically zero
since we exclude from consideration any asymmetry be-
tween oil and water or surfactant head and tail. The bending
rigidity of saturated monolayers « in units of k5T is given by

z,A*A
K=g g (1= 34+ 547, (17)

where z,(A) is determined by Eq. (15) and A and ¢ are given
by Egs. (9a) and (13) with z=z((A). Figure 2 shows « as a
function of A (solid line). The bending rigidity rapidly in-
creases with increasing chain length of surfactant; for
A=10 A, k~A3, as would be obtained by regarding the
interfacial monolayer as an elastic continuum [15]. Shown
together in Fig. 2 are the two data points for CgE; and
CyoE, from Ref. [16]. The values of A have been taken from
the independent fitting of experimental neutron scattering
data [9].
The saddle splay modulus « is similarly determined as

_ cAf27? 6m* 24 w197\
R=——g|—0——4— ——A+ — —_——
£a3| 15 35 5 14 105
Ag 23
+a—3[(w2/6—1)c1+w2zsA2A/120]+ 523 (m2/6—1),
(18)

where again z, is determined by Eq. (15) and A, ¢, ¢,, and
& are given by Egs. (9a), (10a), (10b), and (13) with z=z;.
Figure 2 also shows the plot of « as a function of A. It obeys
the asymptotic scaling — k~ A3,

Our formulas can be extended rather simply to the case of
mixtures of surfactants with different chain lengths by using
a simple mixing rule
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M The inequalities k<0 and 2k + x>0 are always satisfied
A= A2x,. (19) in our model, suggesting the stability of lamellar phases

a=1

Here, M is the number of different surfactant components,
and for component a, Ai and x, are the mean square length
and the mole fraction, respectively. Equation (19) is moti-
vated by the definition of the length A as the mean square
root length between the head and tail parts within a surfac-
tant molecule [10]. According to Eq. (19), the bending rigid-
ity of the monolayer is reduced considerably from that of
pure long-chain surfactant system upon addition of short-
chain surfactants. The short chain molecules act as ““spacers”
between the long chain molecules, reducing the packing con-
straint that opposes the bending of monolayers. This reduc-
tion has been observed experimentally [17] and noted in nu-
merical calculations [5,7]. It is also consistent with the
observation that the addition of alcoholic cosurfactants sta-
bilizes the microemulsion phase of long-chain surfactant sys-
tems.

against the plumber’s nightmare and the spherical droplet
phases [1-3]. The Hamiltonian (2) is symmetric not only in
the oil-water variables (an experimentally realistic situation),
but also in the surfactant head and tail groups. This latter
symmetry is of course rarely present in reality, except for
symmetric diblock copolymers. A consequence of the as-
sumed symmetry is the identically vanishing spontaneous
curvature of the interfacial monolayer. This should not be a
cause of concern: it simply reflects the fact that in deriving
the Hamiltonian (2), one only enforces the stoichiometric
constraint that heads and tails of surfactant molecules are
connected [8,9], ignoring any asymmetry in the actual
length, cross sectional area, or charge state of head and tail
groups. Such asymmetries can be accounted for in principle
by introducing additional short range couplings in the model.
These additional couplings will also improve the quantitative
predictions of solubility in the bulk phases. We leave this
development for future work.
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